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Abstract-The paper describes an adaptive finite element analysis of the transient axisymmetric freezing 
process. Adaptivity schemes are applied to both space and time tessellations. Error equidistribution adjusts 
the nodal positions and Taylor series analysis of time truncation error selects the time step. In implicit time 
integration, the location of the freezing front and the nodal temperatures at the next time is solved by full 
Newton all at once. The method appears to be accurate; in cases for which closed-form solutions are 
available, it agrees well with them. It also avoids the problem found in the Modified Isotherm Migration 
Method where the freezing front tends to retrogress when solid just forms on the outer surface cooled by 

convection. 

1. INTRODUCTION 

FREEZING processes are common in nature and tech- 
nology : examples are freezing of soil, solidification of 
alloys, growing of single crystals from melts, and so 
on. It is desirable to be able to predict the rate at 
which the freezing front advances. Many numerical 

schemes have been devised to solve both transient 
freezing problems [l-5] and steady-state ones [6]. 
Some of the numerical schemes that have been 
developed were reviewed by Crank [7]. 

In this chapter, an axisymmetric freezing problem 
is solved by Galerkin’s method with adaptive tessel- 
lation of space into time-dependent finite elements 

and a finite difference approximation in time. The 
time integration with the finite difference also includes 

time step adjustment. Finite element analysis with 
time-dependent elements has been used by Lynch and 
O’Neill [5] for the same freezing problem and by 
Miller and Miller [8] and Benner et al. [9] for other 
transient problems. The main difference between the 
present analysis and that by Lynch and O’Neill is 
that the location of the freezing front and the nodal 

temperatures are found all at once by Newton’s iter- 
ation, instead of iterating successively for the tem- 

peratures and then the location of the freezing front. 
Newton’s method requires deriving the entries in the 

Jacobian matrix; however, the method is efficient 
because it converges nearly quadratically provided the 
correct Jacobian and a good enough initial approxi- 
mation are available. Newton’s method also com- 
plicates the matrix computation because the Jacobian 
entries in the last column and in the last row deviate 
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from banded matrix structure. However the deviation 

from the banded matrix structure does not raise the 
cost of computation by much because bordered 
matrix analysis, explained later in Section 4.2, sup- 
presses the cost increase. The present analysis also 
includes adaptivity schemes both in space and time. 
The finite elements are chosen so that a certain mea- 
sure of spatial truncation error is uniformly distrib- 
uted. The time steps are chosen so that a Taylor series 
estimate of time truncation error remains less than a 
preset amount. 

The method appears to be accurate: in cases for 
which closed-form solutions are available, it agrees 
well with them. It also avoids a problem of the Modi- 
fied Isotherm Migration Method [3], namely the tend- 

ency of the first solid that forms at the outer surface 
of liquid cooled by convection, to re-melt, i.e. the 

tendency of a newly appeared freezing front to retro- 
gress. The method has been applied recently to solving 
the problem of heat conduction with radiant energy 
input as in thawing by microwaves [lo]. 

2. MATHEMATICAL FORMULATION 

Liquid at initial temperature 7’; well above the 

freezing temperature T$ is frozen by plunging it into 
coolant at temperature T,T. As long as the temperature 
of the outer surface is higher than TT, a standard 
analytical solution of the heat conduction problem is 
available. When the temperature of the outer surface 
drops to Tt, a freezing front starts advancing into the 
sample, and the region swept by the front becomes 
solid, the thermal properties of which are different 
from the liquid’s, 

To simplify the computation, the following restric- 
tions are used : solid and liquid have the same density, 
the solid-liquid interface is sharp and stable, and there 
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NOMENCLATURE 

location of freezing front 
difference in location of freezing front 
between each Newton iteration 
Biot number 
specific heat 
constant 
distance from the center of the sample to 
the outer surface 
error bound in an element 
heat transfer coefficient 
Bessel function of the first kind of 
order 0 
thermal conductivity 
heat of freezing 
total number of nodes 
number of nodes in liquid 
distance 
Galerkin weighted residual 
time 
time increment 
temperature 
coolant temperature 
freezing temperature 
initial temperature 
difference in nodal temperature between 
each Newton iteration 

AT.,,, variable used as a criterion to remove 
nodes in liquid 

ATr,.,,, variable used as a criterion to add 
nodes in solid 

x variable in equations (17) and (18) 

Y time dependent variable in equations (I 1) 
and (12). 

Greek symbols 
m* thermal diffusivity 

B dimensionless solid specific heat 
i: variable used in equations (15) and (16) 

to choose size of time step 
a, Euclidean norm of nodal temperatures of 

finite element and error function 
solutions 

i ‘W, eigenvalues in closed-form solutions 

i” distance in reference element 

P* density 

ib finite element basis function. 

Subscripts 
ana. 
BE 
car. 
FE 
i 

j 
k 

1 

Fn 

num. 
pred. 

;P 
UFD 

closed-form solution 
backward Euler solution 
corrector solution 
forward Euler solution 
node index in finite element 
node index in finite element 
element index in finite element 
liquid 
eigenvalue index in analytical solution 
finite element solution 
predictor solution 
solid 
trapezoidal rule solution 
uncentered finite difference solution. 

Superscripts 
d exponent indicating geometry of the 

sample 
n number of time step. 

is no Bow in the liquid phase. Closed-form solutions 
of the moving front problem are available only for a 
few cases ; e.g. freezing a semi-infinite slab [I 11 and a 
semi-infinite wedge [ 121. Otherwise Galerkin’s method 
with suitable basis functions, finite difference approxi- 
mation, or another approximation method must be 
used. 

The governing equations are heat conduction equa- 
tions 

= 0 in the liquid, and (1) 

in the solid. (2) 

d = 0 corresponds to a plate ; d = 1, to a cylinder; 
and d = 2, to a sphere. 

If the center of the sample is chosen as the origin 
r = 0, the symmetry boundary condition there is 

F(O, t) = 0. (3) 

If the length scale is chosen so that the outer surface is 
at r = 1, Newton’s approximation of the heat transfer 
from the liquid to the coolant there is 

&, t) = -Bi T(1, t) (4) 

where fs is the no~alized solid conductivity and Bi is 
the normalized heat transfer coefficient. If Bi 4 co, the 
temperature of the outer surface reaches the coolant 
temperature right after the sample is immersed in the 
coolant, 

?-(I, t) = 0. (5) 

At the freezing front r = a(t), the temperature is, by 
definition, the freezing temperature T,, and Stefan’s 
condition, a heat balance condition, applies : 

T(4& t) = T, (6) 
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The units of temperature difference, length, etc. in 
which the variables are measured are chosen to make 
the following dimensionless quantities : 

T*-T* 
T=d 

r* a*(t) 
T;_T:’ ‘=x2 a(t) = 7, 

K,* t* * 
t=----- 

p:q*D= ’ 
Cl.=“: 

RI 

L* 
L=---------- 

c,*(T;- T:) ’ 
and b = c 

KI*’ 

3. GALERKIN FINITE ELEMENT ANALYSIS 

The shrinking of the liquid domain and the growth 
of the solid domain as freezing proceeds makes tess- 
ellation into a fixed set of finite elements unsuitable. 
In particular, fixed elements are not able to track the 
exact location of the freezing front, which is required 
to prescribe Stefan’s condition accurately. Accurate 
thermal properties for an element that contains the 
freezing front and spans both liquid and solid, an 
unavoidable problem in fixed-grid finite element 
analysis, are also not known. Fixed-grid analysis of 
the freezing problem is suitable after reformulating 
the heat conduction equations in terms of enthalpy 
[ 1, 41 or after incorporating the latent heat into the 
heat capacity by the Dirac delta function [13]. Finite 
element analysis with moving and deforming elements 
is a convenient method to overcome the problem of 
tracking the freezing front. One node is placed right 
at the freezing front from the start of the computation. 
The node moves and follows the freezing front as 
it advances into the sample. To accommodate the 
movement of the node on the freezing front, the 
elements in both the solid and the liquid should move 
and deform. 

The expansion of temperature in terms of N moving 
and deforming basis functions is 

The Galerkin weighted residuals of equations (1) 
and (2) with NL number of nodes in the liquid, 
0 < r < a(t), and (N-N,) number of nodes in the 
solid, a(t) < r < 1, are 

R, = rddr = 0, 

i= l,N,-1 (8) 

NO 

RN, = s o 4h.L!$rddr+ s a(r) 34, aT 

0 
yrrddr 

B ’ 
f- c(, “~I, h, grd dr+B 

s s 

1 ah aT 
~ -r’dr 

uc1, ar ar 

ad(t) = 0. (IO) 

L d@(t)) 
dt 

The treatment of the heat balance at the moving inter- 
face using equation (10) has also been used by Ettou- 
ney and Brown [6] in their Isotherm Method and 
by Lynch and Sullivan [14]. Lynch and Sullivan [ 141 
indicated that the computations using equation (10) 
as the heat balance at the moving interface led to a 
more accurate solution than those of equation (7). 

Because numerical discretization of nodal tem- 
peratures in time by finite difference requires total 
time derivative, convected time derivatives of dT,/dt 
and drJdt are used to compute the partial time deriva- 
tive of temperature in the residuals [ 151 

i3T N dTi(t) 
-= 
at i=, & 4i(r’t) c-- 

4. NUMERICAL STRATEGY 

Figure 1 shows how equations (8) (9) and (10) 
along with their appropriate initial condition and 
boundary conditions were solved. In the examples 
presented in this paper, the computation always 
started from an initial temperature profile provided 
by a closed-form solution. At the start of the com- 
putation, the starting positions of nodes are adjusted 
in order to approximately equidistribute the error of 
the temperature profile among the elements. The error 
within each element is not exactly known ; however, 
it can be estimated. The error estimation for each 
element, discussed in Section 4.1, depends on the size 
of the element and the spatial derivative of the tem- 
perature profile within the element. The temperature 
profile and the location of the freezing front at the 
next time step are determined by a predictor-corrector 
time integration scheme with a first-order accurate 
backward-forward Euler or a second-order accurate 
uncentered finite difference and trapezoidal rule. The 
uncentered finite difference applied to the total time 
derivatives is 

i= N,+l,N. (9) 

The basis function c$,,,~ associated with the node at 
the freezing front spans both liquid and solid so that 
the residual weighted by this function is 

( > s (APfAP-‘) 

(11) 
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FIG. 1. Flowchart of computation 

whereas the trapezoidal rule is 

y&t”+‘) = y(P)+? 
( 

g(P)+ $i”‘) 
> 

. (12) 

When Bi is finite, the numerical schemes are started 

after the temperature of the outer surface reaches the 
freezing temperature. At the first time step, explicit 
time integrations or trapezoidal rule of equation (9) 
cannot be formulated because the solid domain does 
not exist at the previous time. However, this is not a 
problem for the backward Euler method, because the 
method needs only liquid and solid domains at the 
next time; it does not require a solid domain at the 
previous time. Because of this problem, the backward 
Euler is always used to start the computation ; in fact, 
in a second-order accurate method, the time inte- 
grations for the first four time steps are backward 
Euler. 

4.1. Error equidistribution 
The idea behind the error equidistribution method, 

as hinted by it.s name, is to adjust the nodal positions 
or the element sizes so that the error of the finite 
element analysis is nearly equally distributed among 
the elements. In a one-dimensional problem, the 

method tends to cluster elements in a part of the 
domain whose temperature profile has a high cur- 
vature and a steep gradient. Although the method 
does not account for the error caused by nonuniform 
grid spacing, which can be significant [ 161, it has been 

proved effective for solving a one-dimensional prob- 
lem with steep gradients or moving shocks [9, 171. 

The error equidistribution strategy used in this 
computation follows the continuation-adaptive 

method described in Benner et al. [9]. The difference 
is that the elements used here are quadratic, and an 
error bound for such element is [18] 

(13) 

where 

As the computation progresses, nodal positions are 
updated at every time step according to the error 
equidistribution after the evaluation of a(P+ ‘) in the 
predictor time integration. The nodal positions at the 

next time computed by the corrector time integration 
are slightly shifted from those computed by the pre- 
dictor time integration. The shift of the nodal position 
is proportional to the shift of the front so that nodal 
entanglements are avoided. 

In the liquid, 

(ry’ ‘),,,, = (ry’ ‘)pred $q’T. 
pred 

In the solid, 

CC+ ‘L,, = (a’+ ‘L. 

~‘-a’z+‘Lor 
+ F-F’),,,- (r, 

,,+,_a”+l) _ 
prrd 

4.2. Bordered matrix analysis 
In the predictor time integration, the problem is 

linear. The time integration starts with determining 

the location of the freezing front by equation (7). 
The temperature profile at the end of the next time 
increment is then computed through equations (6), 
(8), (9) and the appropriate boundary conditions. 

In the corrector time integration, the problem is 
nonlinear because the domains of the integration in 
equations (8), (9) and (10) are the solid and liquid 
domains at the next time, which are unknown. A rapid 
and efficient method to solve a system of nonlinear 
equations is the Newton iteration. For every iteration, 
the method solves a set of algebraic equations 

($ ;)(z::) = (;,I (‘4) 
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AT”+ ’ and A& ’ in equation (14) are the difference 
in the nodal temperature and the location of the freez- 
ing front between each iteration. The iteration is 
stopped when the Euclidean norm 

Except for the first time step, convergence with the 
above criterion is achieved in three or less iterations. 

The matrix in equation (14) is known as a bordered 
matrix [19]. Because the matrix A is banded and its 
LU-decomposition can be computed cheaply, the 
simultaneous algebraic equations with the bordered 
matrix in equation (14) can be computed efficiently 
through 

An”+’ zz d_c;A_,bW,L-cTA’W 
AT”+’ = A-‘R-Ad+‘A-‘b. 

4.3. Time step selection 
In the computation, the step size taken for the next 

time integration is adjusted according to the Taylor 
series analysis of the time truncation error first sug- 
gested by Gresho et al. [20]. Following their error 
analysis, the step size taken for the next time of first- 
order time integration, which is computed by back- 
ward and forward Euler, is 

2s 

I 

I!2 

At”+’ = At” 
(ll(T”+‘),,-(T”+‘),,l/, . 

+ II (a”’ ‘)FE - w+ ‘LIE II 2) 

(15) 

For second-order accurate time integration, which 
is computed by uncentered finite difference and trap- 
ezoidal rule, the step size for the next time is 

[ +~+3) 11’3 

“+I = At” (II(T”+‘),,,-(T”+‘),,II, 

L +II(a”+‘) “FD - (a”’ ‘)TP II 2) J 

(16) 

where E is the expected accuracy from the numerical 
analysis. 

Because the step size in the next time in first-order 
time integration depends on E to the power of l/2 and 
in second-order time integration it depends on E to the 
power of l/3, the number of steps required to perform 
the computation at large E is fewer in the first-order 
than in the second-order. However, for small values 
of E, when high computational accuracy is sought, the 
number of steps is less in the second-order than in the 
first-order. 

5. RESULTS AND DISCUSSION 

This section discusses the examples of two different 
physical situations; first, freezing with infinite Bi and 
second, freezing with finite Bi. In the first case, a 
closed-form solution is available and so the robustness 
of the finite element computation can be evaluated. 
In the second case, a closed-form solution is not avail- 
able. However, it is expected that the finite element 
computation in the second case is as accurate as the 
computation in the first case because the governing 
equations for both cases are the same, except for the 
boundary condition at r = 1. 

5.1. Freezing an infinitely wide plate of water when the 
Biot number is infinite 

The analytical solution of freezing with infinite Bi 

is available only for a semi-infinite slab ; however the 
solution is also valid for a slab with finite thickness (a 
plate) as long as the temperature in the middle of the 
plate does not drop from its initial temperature. The 
solution [7, 1 l] is : 

in the liquid, 

T(r, t) = 1+ 

in the solid, 

T(r, t) = 
Tf 

erf ___ . (18) 

The position of the advancing front is 

u(t) = 1 -xt”* 

where x is the solution of 

F(x) = 
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FIG. 2. Comparison of closed-form and finite element solu- 
tions of freezing an infinitely wide plate of water when Biot 

number is infinite. First-order time integration scheme. 

Figures 2 and 3 demonstrate the performance of 
the finite element analysis of first- and second-order 
time integration. The figures show the temperature 
profile after the temperature of the outer surface of 
an infinitely wide and 6 mm thick plate of water, 
initially at 25”C, is suddenly dropped to - 183°C. The 

finite element computation starts from the tem- 
perature profile obtained from the error function solu- 
tion when the freezing front advances 0.099 mm into 
the sample. Dimensionless variables, which incor- 

porate the thermal properties of water and ice, used 
in the computation are ~1, = 8.43, /3 = 4. Tr = 0.8798, 
L = -0.3816 and t = 1.51574x lo-?*. The problem 

is a good example for comparing the finite element 
solution against the error function solution because 

0.5 1 1.5 2 2.5 

Distance (mm) 

FIG. 3. Comparison of closed-form and finite element solu- 
tions of freezing an infinitely wide plate of water when Biot 

number is infinite. Second-order time integration. 

the temperature in the middle of the sample hardly 
drops although 60% of the water has been frozen. 

The finite element solutions shown in the figures 
were computed with eight quadratic elements in the 

liquid and eight quadratic elements in the solid. The 
markers on the curves in the figures are the tem- 

perature at every other node in the finite element 
solution, whereas the solid lines are the temperature 

profiles computed from the error function solution. 
The figures show that error equidistribution auto- 
matically adjusts the size and location of adaptive 

elements to resolve domains which are highly curved 
and/or have a steep gradient, especially at the initial 
temperature profile. It also puts small elements in the 
computation domains next to the freezing front ; the 
small elements provide better accuracy in computing 
Stefan’s condition. The adaptive scheme also follows 
the evolution of the temperature profile as the com- 

putation progresses ; it stretches the adaptive elements 
around the steep gradient as the gradient flattens. 

The time stepping procedures automatically select 
small step sizes, of the order of IO-‘, when the freezing 

front just advances into the sample. The procedures 
select larger step sizes only after the freezing front 
advances deep into the sample. The largest step size 
can attain a step size 334 orders of magnitude larger 
than the smallest step size. The same circumstances 
are also observed in computation with finite Bi. 

Figures 2 and 3 illustrate the comparison of the 
temperature profiles obtained by the finite element 
solution to those obtained by the error function solu- 
tion when the freezing fronts in both schemes reach 

the same location. Comparison in this manner is jus- 
tified because the temperature in the solid and in the 

liquid, which are separated by the sharp freezing front, 
are governed by different heat conduction equations. 
Visual examinations of curves in the two figures indi- 
cate that the temperature profile in the finite element 
solution agrees well with those computed from equa- 
tions (15) and (16) in terms of the error function. The 
good agreement is supported by the small Euclidean 
norms 

Surprisingly, sometimes the agreement improves as 

the computation progresses. Apparently, comparison 
of the error function and the finite element solutions 
at different times accidentally reduces the numerical 
error. 

Unfortunately, the accuracy of the finite element 
solution of the temperature profile in space tess- 
ellation is not always accompanied by an accuracy in 
time integration, especially for first-order time intc- 
gration. In the first-order time integration, the arrival 
time of the freezing front is consistently higher than 
the arrival time computed through the analytical solu- 
tion. The disagreement worsens as the computation 
progresses. The following Taylor series analysis of the 
time truncation error for backward Euler explains the 
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disagreement. For each time step in the time inte- 
gration, the error is [21] 

(At")' d2a(t) 
(~+‘hE-(Cf+‘)a”a. =y- dt2 + WV3) 

= ~~t-"'(At")'+0((At")~) > 0. 

In the second-order time integration, the arrival time 
is consistently lower than the time computed ana- 
lytically. Taylor series analysis of the trapezoidal rule 
explains the disagreement : 

(a”+‘),,-(a”+‘),,,, = q$+O((AP)4) 

= - ~~.~t-5i2(8tn)3+0((Atn)4) < 0. 

With eight elements in the liquid and eight in the 
solid, the highest attainable accuracy of first-order 
time integration is achieved at chosen E = 0.0017 : see 
Fig. 2. Further improvement by choosing a smaller E, 
i.e. E < 0.0016, is not possible because the time selec- 
tion scheme selects a smaller and smaller step size and 
finally the program execution quits because the step 
size becomes smaller than the machine accuracy. 
Additional elements in the space tessellation are 
required to perform the computation at E < 0.0016. 

With eight elements in the liquid and eight in the 
solid, the highest attainable accuracy in the second- 
order time integration is achieved at E = 0.0005 : see 
Fig. 3. At the end of the computation, the numerical 
arrival time of the freezing front is accurate to within 
0.03%, which is more than satisfactory. A lower E, i.e. 
E < 0.0004, causes the scheme to select a smaller and 
smaller step size. Because of the superiority of the 
second-order time integration, the rest of the examples 
presented in this paper, except where stated otherwise, 
were calculated with second-order time integration 
and E = 0.0005. 

5.2. Freezing an infinitely wide plate when the Biot 

number isjinite 

Figure 4 shows the temperature profiles during 
freezing of an infinitely wide 6 mm thick plate with 

I”” 

0 0.5 1 1.5 2 2.5 3 

Distance (mm) 

FIG. 4. Temperature profile of freezing an infinitely wide 
plate of water in cryogen at - 183°C. 

Bi = 10, a Biot number at the upper end of the range 
for freezing a thin plate in most practical situations. 
The finite element computation starts from the tem- 
perature profile calculated from the closed-form solu- 
tion for the moment the outer surface just reaches 
freezing temperature. The closed-form solution is [ 1 I] 

where the eigenvalues 1, are computed from 

Bi = A,,, tan (&,). 

The markers on the curves in Fig. 4 are the tem- 
perature at every other node. The curves show that 
the error equidistribution automatically puts a small 
element next to the outer surface. The small element 
is required to represent accurately Newton’s law of 
cooling on the surface. 

Initially, the liquid domain has eight quadratic 
elements and the solid domain has one. As the com- 
putation progresses, some nodes in the liquid domain 
are removed as the domain shrinks and additional 
nodes are added to the solid domain as that domain 
swells. The removal and addition of nodes is con- 
trolled by the following criteria. Every other node in 
the liquid is removed if 

Additional nodes are inserted between every other 
nodes in the solid if 

w-ma) > AT 

N-K smax’ 

Removal of nodes might save some computation 
time, because it reduces the number of algebraic equa- 
tions. However, early node removal causes a numeri- 
cal problem (explained in Section 5.4) which instead 
probably costs more computation time. For all com- 
putations presented in this paper, except where stated 
otherwise, we chose Ai”,.,i, = 3 x 1O-5 and AT,,,,, = 
5 x 10-Z. 

5.3. Dynamics of the propagation offreezing front 
Figure 5 illustrates the dynamics of the propagation 

of the freezing front both when the Biot number is 
finite and when it is infinite. The location of the front 
and the front speed are plotted against time. In the 
case of finite Bi, the front speed is computed from 
equation (7). Temperature profiles in the quadratic 
elements on both sides of the freezing front are used 
to compute the thermal gradients. In the case of in- 
finite Bi, the existing closed-form solution provides 
the front speed. 

The figure shows that the dynamics of front propa- 
gation when the Biot number is finite are different 
from those when the Biot number is infinite. This 
indicates that calculation with infinite Bi is not a good 
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FIG. 5. History of the freezing front position and the freezing 
front speed in a liquid plate frozen when Biot number is 

infinite and when it is finite. 

thermal resistance between the outer surface and the 
coolant cannot be neglected. The differences in the 
dynamic behavior are most apparent at the onset of 
front propagation. The front computed with infinite 

Bi advances several times deeper than the front com- 
puted with finite Bi. Moreover, the front speeds 

behave differently. 
In freezing with infinite Bi, the front starts advanc- 

ing into the plate at infinite speed. The following 
analysis of equation (7) explains the infinite speed. In 
the case of infinite Bi, the temperature at the outer 
surface abruptly plunges to the coolant temperature 
causing an infinite thermal gradient in the solid 
domain. The thermal gradient in the solid is infinite 
because the two opposing surfaces, i.e. the liquid- 
solid interface and the solid-coolant interface that 
sandwich the vanishingly thin solid domain, are at 
different temperatures. As indicated by equation (7), 
the infinite temperature gradient in the solid causes 
infinite front speed. 

In the freezing process with finite Bi, the front starts 
advancing into the plate with vanishing speed because 
the solid temperature at the outer surface falls gradu- 
ally. The heat balance in equation (7) suggests that 
the freezing front will not advance into the plate unless 
the thermal gradient in the solid is steep enough to 
move the front. Once the front penetrates into the 
plate, its advance accelerates because the solid tem- 
perature at the outer surface rapidly declines; the 
declining temperature steepens the thermal gradient 

in the thin solid domain. As the solid thickens, the 
thermal gradient on the solid side of the freezing front 
lessens and, as a consequence, the front speed falls. 
The thicker and cooler solid also slows down the rate 
of heat transfer from the freezing front to the outer 
surface. The rate of heat released from the outer sur- 
face to the coolant also falls because the outer surface 

cools. 
The vanishing speed at the onset of the freezing 

process causes excessive numerical error if the cal- 
culation starts with introducing an artificial thin solid 

domain on the outer surface [3], especially if the ther- 
mal gradient in the artificial solid is too low. The 
introduction of a thin solid domain steepens the ther- 
mal gradient in the liquid next to the freezing front if 
the temperature profile in the liquid is not adjusted. 

The steepening thermal gradient in the liquid along 
with the low thermal gradient in the solid moves the 
freezing front outward instead of inward. 

The present computation method does not require 
introduction of an artificial solid on the outer surface 
to start the calculation, because backward Euler auto- 
matically delivers a solid domain along with appro- 

priate thermal gradients on both sides of the freezing 
front. The proper thermal gradients eliminate the 
problem of the freezing front moving outward. 

5.4. Freezing water-bearing sandstone in cryogen 

This section describes the dynamics of the freezing 
process in three different simple geometries: plate, 

cylinder, and sphere. As an example, temperatures are 
calculated using effective thermal properties of water- 
bearing sandstone. The properties of water-bearing 

sandstone are used because the original motivation of 
this work was to estimate the time required to freeze 
a 25°C cylindrical water-bearing sandstone, 10 mm 
long and 6 mm diameter in nitrogen slush at - 183°C. 

Fast-freezing of liquid-bearing sandstone is required 
before it can be examined under a scanning electron 
microscope [22]. In dimensionless variables, the 
numerical values are as follow : u, = 1.27, fi = 1.07, 
r,- = 0.8798, L = -0.1143, and t = 0.181618 t*. In 
all geometries, the distance from the outer surface to 
the center of the sample is 3 mm. 

The computation was started from the temperature 
profile obtained from a closed-form solution when the 
outer surface just reaches freezing temperature. The 

closed-form solution for a plate is given by equation 
(19). In terms of Bessel functions, the solution for a 
cylinder is [ 1 l] 

where the eigenvalues 1, are computed from 

&,&(&J + BiJ,,(/l,) = 0. 

In terms of sine functions, the solution for a sphere is 

1111 
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(21) 
where the eigenvalues 1, are computed from 

Bi = 1 - Lm cot (I.,). 

The time integrations for the first four time steps 
are computed by the backward Euler method with 
constant step size At = 5 x 10-‘. After the first four 
time steps, the front penetrates about 5 x 10M4 mm 
deep into the sample. From this step onward, the auto- 
matic second-order time-stepping procedure described 
in Section 4.3 computes the time integration. 

Figure 6 shows the temperature profile of the freezing 
process in a plate with Bi = 1 and E = 0.0006. Markers 
on the curve in the figure are the temperatures at every 
other node. At first the temperature profiles in the solid 
phase are close to straight lines. The profile becomes 
slightly concave do~ward only after the advancing 
front gets close to the middle of the plate. In the liquid 
phase, at first the temperature profile is highly curved 
and gradually it flattens as the freezing front advances 
deeper into the sample. As the freezing front gets close 
to the middle of the sample, the profile becomes flat. 

In the computation shown in Fig. 6, ATrmi, = 0.01 
was used as a criterion to remove some nodes in the 
liquid phase. At this high AT,,,in, the number of 
elements in the liquid falls from 8 to 4 at a*(t) z 1.65 
mm, from 4 to 2 at a*(t) z 1.28 mm, and from 2 to 1 
at a*(t) x 0.96 mm. 

Figures 7 and 8 show the temperature profiles of 
the freezing process in a cylinder and in a sphere. 
Markers on the curves in the figures are the tem- 
peratures at every other node. In the computations, a 
small element is put next to the center of the sample 
because otherwise the temperature at the center oscil- 
lates and drops significantly at the onset of the com- 

2( 
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Plate with Bi = 1 
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Distance (mm) 

FIG. 6. Temperature profile of freezing an in~niteiy wide 
plate of water-bearing sandstone in cryogen at - 183°C with 

Bi = 1. Early node removal (see text). 

0 0.5 1 1.5 2 2.5 3 

Distance (mm) 

FIG. 7. Temperature profile of freezing an infinitely long 
cylinder of water-bearing sandstone in cryogen at - 183°C 

with&= 1. 

putation with trapezoidal rule. The excessive numeri- 
cal error causes difficulties to advance the freezing 
front at the start of the computation; sometimes the 
front moves outward. The problem does not show up 
in the case of freezing a plate though. Apparently the 
temperature oscillations in area close to the center of 
a cylinder and a sphere are more sensitive than those 
in the middle of a plate. The temperature oscillations 
might be caused by the added r and rz terms in the 
Galerkin, or weak, formulations of cylindrical and 
spherical domains. 

The tem~rature profiles of the freezing process in 
a cylinder and in a sphere are slightly different from 
those in a plate. At first the temperature profiles in 
the solid phase are close to a straight line. The profile 
gradually curves concave downward as the freezing 
front advances deeper into the sample. As the freezing 

-60 

-80 

- 
0.5 1 1.5 2 2.5 3 

Distance (mm) 
FIG. 8. Temperature profile of freezing a sphere of water- 

bearing sandstone in cryogen at - 183°C with Bi = 1. 
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front gets close to the center of the sample, the profile In a cylinder, the liquid mass solidified by the front 
inflects ; it is concave upward in the solid domain close moving at a certain distance is proportional to a(r) 
to the front and is concave downward in the solid and, in a sphere, it is proportional to a(t) ‘. Reduction 
domain far from the front. The inflection provides a of the liquid mass solidified causes the second front 

high thermal gradient in the solid phase next to the acceleration in the case of freezing a cylinder. In the 
freezing front and speeds up the movement of the case of freezing in a sphere the reduction is more 
advancing freezing front. The temperature profiles in significant and so the front speed never decreases ; it 

the liquid are similar to those in the plate except the always increases. In a plate, the liquid mass solidified 
profiles in a cylinder and a sphere flatten at a faster by the same moving distance remains constant during 

rate. the whole process. 
Figure 9 shows that the dynamics of the propa- 

gation of freezing fronts in a plate, in a cylinder, and 
in a sphere are different. In the case of freezing a 
plate of liquid, the front at first accelerates rapidly; 
however, after the front advances to a certain thick- 

ness, the front speed hovers at about 1 mm s- ‘. The 

front accelerates for the second time although the 
acceleration is small. The reduction of the thermal 

gradient in the liquid phase to a vanishing gradient 
causes the small acceleration. In the case of freezing 

a cylinder of liquid, the front also accelerates rapidly 
at the beginning of the process, the front speed then 
hovers at about 1.5 mm SC’, and finally the front 
accelerates rapidly for the second time as it gets close 
to the center of the cylinder. The dynamics of the 
freezing front in a sphere are similar to those of freez- 
ing a cylinder, except the front speed never hovers : it 
always increases. 

The dotted wiggles pointed by arrows in Fig. 9 
are the front speed computed by equation (7) with 

AT,.,,” = 0.01. The wiggles are easy to identify if the 
axis of the front speed in Fig. 9 is stretched : see Fig. 
10. Figure 10 shows three occurrences of wiggles. The 
first corresponds to the first reduction of elements in 

the liquid from 8 to 4, the second to the second 

removal of nodes, and the third to the third removal 

of nodes. The inset of Fig. 10 magnifies further the 
first occurrence of the wiggles. Apparently, the node 

removal, especially the removal of the node next to 
the front, disrupts the accuracy of the computation of 

Stefan’s condition. If the computation is repeated with 

Aq.m,n = 0.001, where the first removal of nodes is 
delayed and occurs when a(t) z 0.9 mm, the wiggles 

disappear (solid line in the lower plots in Fig. 9 and 
in Fig. 10 and also solid line in the inset of Fig. 10). 

In a cylinder and a sphere, the liquid mass solidified 

as the front passes a certain distance lessens as the 
freezing front gets close to the center of the sample. 

However, the occurrence of wiggles does not reduce 
the accuracy of the arrival time of the freezing front ; 
the dotted line and the solid line in the history of the 

front position fall on top of each other (top of Fig. 
9). The accuracies of the arrival time of the freezing 
front and the temperature profile are preserved 
because in the finite element analysis the front move- 
ment is evaluated through the trapezoidal rule, namely 

equation (10). The front speed computed by this 
method also produces wiggles: compare the dashed 
line in Fig. 10 and the dashed line in the inset of the 

figure. However, the amplitudes of the wiggles arc 

0.5 1 1.5 2 2.5 3 

Sphere 
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/’ 
2- /. /. 
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.*' 

0.5 1 1.5 2 2.5 3 

Time (set) 
FIG. 9. History of the freezing front position and the freezing FIG. 10. The effect of early node removal on the history of 

front speed in a plate, a cylinder, and a sphere. the freezing front speed in a plate. 
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several times smaller than the dotted wiggles. The 
computation with the trapezoidal rule is accurate; 
it agrees with the computation with delayed nodal 

removal even after the occurrence of wiggles, notably 
after the decay of the third wiggles where the dotted 
line deviates from the solid and the dashed lines. An 
arrow in Fig. 10 points out an area where the solid 
line deviates from the dashed line. The deviation is 
not caused by numerical artifacts. It is caused by a 
lack of data points for the solid line in the region 

because the computation with delayed node removal 
takes a big time step. In the region to the lower right 

of the arrow the three lines agree very well. 
The versatility of the automatic time-stepping pro- 

cedure is the second reason that numerical accuracy 
is maintained. When the first wiggle occurs, the time- 
stepping procedure automatically selects a smaller and 
smaller time step until the solutions of the predictor 
time integration agree with those of the corrector time 
integration (inset of Fig. 10). From t* = 1 .l s to 
t* = 1.6 s, the computation with early node removal 

takes 13 time steps, whereas the computation with 
delayed node removal, which is free of wiggles, takes 
only 4 time steps. The time step taken right after the 
occurrence of the wiggles gets smaller and smaller 
because of the widening disagreement between the 
solution provided by uncentered finite difference, 

where the front movement is computed from equation 
(7), and the solution provided by trapezoidal rule, 

where the front movement is computed from equation 

(10). 
Because early node removal causes wiggles and 

costs more time steps, it is better to remove nodes in 

the liquid at later times. Probably a better node 

removal scheme is one that can remove some nodes 
in the liquid phase except the two nodes that are 
closest to the freezing front. Such a removal scheme 

would preserve the liquid thermal gradient next to the 
freezing front computed by quadratic elements so that 
the numerical approximation of Stefan’s condition 

after the removal of nodes remains accurate. 

6. CONCLUSION 

The method developed in this paper is suitable for 
solving the axisymmetric Stefan problem. The method 
seeks a rapid solution to within machine accuracy by 
means of the Newton iteration. The method is also 

efficient because it incorporates adaptivity in space 
tessellation and automatic time step adjustments in 
time integration. Adaptivity of the spatial tessellation 
saves a lot of computation time if steep gradients are 
present, because only a small number of adaptive 
elements is needed to resolve the gradients. The time 
step adjustment also saves computation time because 
it avoids employing costly small time steps in a situ- 
ation where a large time step is sufficient. 

The second-order time-stepping procedure needs 
fewer time steps and fewer elements to complete the 
freezing computation with higher accuracy than the 

first-order time-stepping procedure. However, the 
first-order time-stepping procedure is simple and it 
is good enough for solving the freezing problem 

for most engineering purposes, where an accuracy to 
within l-2% is acceptable. 

The dynamics of the propagation of the freezing 
front in the freezing process when Bi is infinite are 
different from those in the freezing process when Bi is 
finite. In a freezing process with infinite Bi, the front 

starts advancing into the liquid with infinite speed. 
Whereas in a freezing process with finite Bi, the front 
starts advancing into the liquid with vanishing front 

speed. 
Early node removal in the liquid domain might save 

some computation time. However, the front speed 
oscillates if the nodes are removed too early. It might 

even increase the computation time. 
An extension of this method to two- and three- 

dimensional problems is not straightforward ; we 
should find a suitable and handy method to tessellate 
the appearing and disappearing phases in two- and 
three-dimension adaptively. Some investigators [23, 
241 have solved a two-dimensional transient Stefan’s 
problem with constant temperature at the outer sur- 
face using moving and deforming elements. However, 
the same problem with convection or radiation at the 

outer surface remains an open problem. 
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